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In many numerical models for hindcasting or forecasting ocean waves, wave energy is 
propagated over large distances. In the class of discrete spectral models such propagation suf- 
fers from a disintegration of the initial wave held into many individual wave fields. This “gar- 
den sprinkler” effect is due to the treatment of finite spectral bands as individual wave com- 
ponents. It is shown in the present study that this effect can be avoided by including two 
correction terms in the commonly used energy balance equation of the waves. One of these 
terms accounts for longitudinal (frequency) dispersion, the other term accounts for lateral 
(directional) dispersion. These terms are derived from the energy balance of finite spectral 
bands and they are expressed in terms of the spectral band characteristics. Since their nature is 
that of diffusion terms, they are local operators, which is computationally convenient. 
However, the coefficients of these terms are not locally determined. To illustrate the effect of 
the proposed correction terms, the propagation of swell from a distant storm (oceanic scale) is 
computed with and without the proposed correction terms. 0 1987 Academic Press, Inc. 

I. INTRODUCTION 

Numerical computations of swell propagation over large distances across the 
ocean surface are routinely carried out in models for wave forecasting and wave 
hindcasting. In the linear approximation such computations are almost trivial for a 
single wave component. However, many of such models are basically formulated in 
terms of a discretized wave energy spectrum. This introduces nontrivial com- 
plications for the wave propagation computations since variations in propagation 
speed and direction in each spectral band introduce dispersion that presently 
operating models do not seem to handle properly. 

Ideally, an initially narrow spatial distribution of wave energy on the ocean sur- 
face propagates in the model across the ocean while its horizontal extent increases 
linearly in time if the wave energy is distributed over a finite spectral bandwith. The 
energy of the entire spectrum will thus spread smoothly over the ocean. However, 
the spectral resolution in most of the presently operating models, in particular the 
directional resolution, is so coarse that a “garden sprinkler” effect occurs: an initial 
spatial distribution disintegrates into a number of similar distributions, one for each 
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spectral band of the discretized spectrum. One consequence of this disintegration is 
that the arrival of swell from distant storms is often poorly predicted. 

A straightforward solution to the above problem is to increase the spectral 
resolution. In fact, the spectral resolution should be such that the spreading of an 
initially narrow spatial distribution should not be larger than the mesh-size of the 
computational grid after the wave field has crossed the ocean. This implies that the 
width of the spectral bands in frequency (df) and direction (d(3) should fulfill the 
conditions 

and 

Af<fIN 

AQ < l/N 

in which N is the distance across the ocean expressed in number of meshes. A 
typical value for numerical wave models for the North Atlantic Ocean is N = 35, so 
that Af N 0.03f and A0 N 1.5”. However, such a high directional resolution is not 
practical in many applications and other means of improvement are called for. 

The above unsatisfactory state of affairs is discussed in general terms in a recent 
intercomparison study of ten advanced wave forecasting models [ 11. For a review 
of relevant propagation algorithms reference is made to Isozaki and Uji [2], Resio, 
Garcia, and Vincent [3] and Young and Sobey [4]. The issue is adressed in detail 
by Gelci, Devillan, and Chavy [S] and by Greenwood and Cardone [6]. In these 
two publications two algorithms are described in which the propagated wave 
energy is redistributed at each grid point of the model over its immediate vicinity at 
each time step of the model. Gelci et al. [S] choose this redistribution explicitly 
such that the obtained spatial spreading of the wave energy as a function of time is 
some best approximation of the actual spreading of the waves during a period of 
three days. Another approach is suggested in the SWAMP study [ 1 ] in which a 
convolution filter is derived as a propagation operator for an initially narrow wave 
field (narrow in horizontal dimensions). However, the rationale for applying this 
operator to arbitrary wave fields is not given. Moreover, some numerical problems 
may be expected with this filter as its horizontal width in longitudinal direction is 
typically smaller than the grid-spacing in an ocean wave model (typically 50 km for 
the filter and 150 km for the grid-spacing). 

In the present paper the solution to the problem is derived from the energy 
balance equation for arbitrary wave fields. The solution consists of adding two 
correction terms to the energy balance equation to represent spectral bands rather 
than spectral components. The effect of these terms is precisely what is required: 
they increase the spatial extent of an initial distribution linearly in time, they are 
local operators and their characteristics depend on the spectral band characteristics. 

The structure of the paper is as follows. In Section II, we adress the theoretical 
aspects of our arguments. For reasons of clarity we restrict ourselves first to one- 
dimensional propagation. The arguments are later extended to two-dimensional 
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propagation. The inclusion of the effects of wave generation and dissipation on the 
propagation scheme conclude our theoretical arguments. In Section III we compare 
results of near-exact wave propagation computations with the proposed com- 
putation method and two conventional methods. Some computational aspects are 
adressed in Section IV. Our conclusions are formulated in Section V. 

II. SPECTRAL DISPERSION 

A. Introduction 

For most practical purposes, the wave field on the ocean can be described ade- 
quately with the two-dimensional energy density spectrum as a slowly varying 
function of time and space. The evolution of a single wave component in deep water 
with frequency f and direction of propagation 0 can then be obtained from the 
energy balance equation [7, S] 

;E(f, 0; x, t)+ OCW, @Hf, 0; x, t)l = w9 8; x, t). (1) 

This equation is valid for propagation in a Euclidean space, spanned by time t and 
space coordinates x = (x, y). E is the energy density of the wave component, c is 
the propagation speed vector and S is the sum effect of all processes of wave 
generation and wave dissipation. The left-hand side of this equation represents the 
propagation of the wave energy, so that for propagation problems we consider 
Eq. (1) with Scf, 8; x, t) = 0. The formulation of the energy balance equation in 
spherical coordinates to model wave propagation over a globe is touched upon in 
Section 1I.C. 

Since the direction of propagation is constant in deep water, the wave energy 
density of one spectral wave component travels along straight lines, or if the earth’s 
curvature is taken into account, along great circles, with a propagation speed given 
by linear wave theory. It has been established that this is true even for propagation 
over very large distances [9, 10, 111. However, corrections are needed for the 
propagation of wave energy in finite spectral bands as considered in the present 
study. 

B. One-Dimensional Propagation 

We consider uni-directional waves propagating in the direction of a (one-dimen- 
sional) s-axis. The corresponding spectrum is then written as E(f; s, t) and the 
propagation equation for individual wave components becomes 

(2) 

In conventional numerical wave models the propagation of finite spectral bands is 
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considered rather than of individual components. We can obtain the corresponding 
energy propagation equation by integrating Eq. (2) over the frequency band con- 
sidered. Denoting the central frequency of this band with f, and the band width 
with dfi, the propagation equation becomes (dropping the notation for time and 
space) 

1 
df= 0. 

Defining Ei as the average energy density in this frequency band (fi- f Aj;, 
fi + 4 AfJ, and changing the order of differentiation and integration in Eq. (3), we 
find 

Now we consider the second term in this Eq. (4) separately. It seems acceptable, in 
view of other assumptions made in wave forecasting models, to approximate c(f) 
and E(f) as linearly dependent on f within the frequency band considered. If we 
define ci as the propagation speed at frequency fi, we can write 

The first term on the right-hand side of this equation corresponds to the 
propagation of the energy density at the central frequency fi. It is represented in 
every presently operating discrete spectral wave model. It then follows that the 
effect of the finite band width on the energy propagation is represented by the 
second term. Writing {c(f) - ci} as c;(f -f;) in which c; = dcJdf, which is permit- 
ted if c(f) depends linearly on f, we find that Eq. (4) becomes (inserting the 
notation for time and space and neglecting higher order terms): 

-$(,, 1)+$ c.E.(s t) +t df?c:Qf; s,t) =o. 
[El’ ] a,[12 'af ] (f-3) 

The first two terms are similar in nature to the terms on the left-hand side of the 
original energy balance equation (2). In fact, these two terms are often interpreted 
as representing the original propagation equation in numerical models. The third 
term of Eq. (6) provides the correction which is required to represent the effect of a 
finite band width. 

The numerical implementation of the first two terms of Eq. (6) or (2) has been 
described in detail in the literature (see Introduction). It is therefore deemed 
unnecessary to elaborate on it here. The third term seems to be new and its 
numerical implementation is not obvious. A numerical approximation of the fre- 
quency derivative of the energy density aE(f)/tJf which appears in this term, would 
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(for a conventional finite difference method) require the determination of E for fre- 
quences fi _ , and fi + , . This does not seem to be a problem if the spectrum at any 
one time is smooth and broad compared with frequency band Af. However, when 
swell propagates over large distances, its spectrum becomes rather narrow and the 
estimate of aE(f)/af is consequently inaccurate in most models. We therefore 
suggest here another approximation which relates information in the frequency 
domain to information in the space domain. 

Consider the energy of a single wave component E(f) at a time interval T after 
it has been imposed on the ocean surface at time t, (see Fig. 1). The spatial 
distribution propagates over the ocean undistorted since the energy is carried by 
one frequency only. We thus find 

E(f; s, t) = E(f; 5, t - T) (7) 

in which 

(=s-c(f) T. (8) 

If for all frequencies in the frequency band (f;. - 4 dfi, f, + f Af) an identical initial 
distribution is imposed at time t, = t - T, we find, 

E(f; s, t) = &(<, t - T). (9) 

The frequency derivative of the energy density can then be written, with Eq. (7) 
and (9) as 

&E(f; 5, t-T)=-&, t-T)% 
df 

(10) 

and, with Eq. (8), it follows that 

;E(f; 5, t - T) = -c: T$ E,(& t - T). (11) 

With this result Eq. (6) can already be simplified conderably from a numerical 

FIG. 1. One-dimensional propagation of an initial spatial energy distribution carried by one fre- 
quency (----) and by a finite frequency band (-). 
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point of view. A further simplification can be achieved if we assume ai7,/@ to be 
constant along the characteristic dxjdt = ci, at least to first order: 

2 E,(4, t - T) e ; Ei(S, t). 
at 

The error in this approximation of ai?Jaq is of second order in Af and the term 
containing aE/af in the propagation equation (6) is a second order term in Af, so 
that the error due to the above approximation is of fourth order in Af: With 
equations (11) and (12) we can write Eq. (6) as 

$ &(s, t)+$ c.E.(s t) -2 gc:2T; Ei(S, t) =o. [-]aJ . ] (13) 

The third term in this Eq. (13) is the correction term to account for the finite spec- 
tral bandwith. It has the character of a diffusion term. We can write Eq. (13) also as 

$,(S. I)+; C.E(S t) -2 o.-$,(S, t) =o. [ll,laJ . ] (14) 

The time-dependent diffusion coefficient Di is then 

D, = AC: T/12 (15) 

in which Aci denotes the propagation speed difference across the frequency band 
(fi- t Ah, f, + t AfJ, 

Aci = c; Af; (16) 

and T the time elapsed since the energy was imposed on the ocean surface, or, in 
terms of wave generation, the time elapsed since the energy was generated instan- 
taneously by the wind. Such instantaneous generation does not in fact occur on the 
ocean so that a procedure should be defined to assign a value to T. We return to 
this problem in Section 1I.D. 

To demonstrate that the correction term in Eq. (14) has the desired property to 
spread an initial spatial distribution linearly in time at the proper rate, we compare 
here an exact calculation of the propagation of a continuous spectrum with the 
proposed propagation of its discretized version. Consider a h-function in space, i.e., 
a spatial distribution with a horizontal dimension which is small in terms of 
propagation distances but sufficiently large in terms of wavelength to exploit the 
notion of wave spectra and to ignore the dispersion of leading and trailing edges. It 
is located at position s = 0 at time t = 0 as the initial spatial distribution of wave 
energy that is distributed evenly over an arbitrary but narrow frequency band 
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(f, - 4 Afi, fi + 1 Af). For a continuous spectrum the energy density at frequency f is 
propagating with speed c(f) so that at time t, 

E(f; s, t)=ECf; s-c(f) t, t). (17) 

The highest frequency in the frequency band has propagated a distance (c - 4 AC) t 
while the lowest frequency has propagated a distance (c + f AC) t. The total wave 
energy at time t is thus uniformly distributed over the interlying ocean area. The 
exact solution for the width of this block function, expressed in terms of its 
standard deviation u,, is 

(rI = ActJfi. (18) 

The discrete version of the continuous spectrum is one carrier frequency fi= f with 
the assigned frequency band width Af, = Af: The analytical solution of Eq. (14) for 
the above initial b-distribution is the propagating Gauss-distribution (Fig. 2), 

Ej(s, t) = l/( t J&L) exp - [(s -$‘] 
(19) 

in which tx is Acf/12. The peak value of this distribution, equal to l/(t ,/?%), is 
located at s = c,t. The standard deviation (T* of this distribution is 

c2 = Aci t/a. (20) 

Comparing Eqs. (18) and (20) it is obvious that the correction term in Eq. (14) 
increases the width of the spatial energy distribution linearly in time and that it 
does so at the appropriate rate. 

The correction term in the propagation equation (14) has then all the desired 
qualities: (a) it is derived from the energy balance equation of the waves, (b) it 
is formulated in terms of the spectral band width, which is gratifying from a 
fundamental point of view; (c) it spreads an initial distribution linearly in time 
at the appropriate rate; (d) being a diffusion term it is a local operator, which is 
computationally convenient. 

FIG. 2. One-dimensional propagation of an initial d-function carried by a frequency band, as a block 
function, exact solution (-) and as a Gauss-distribution, approximated solution (----). The standard 
deviation of both functions increases proportionally with time and frequency bandwidth. 

SRI:68.‘2-5 
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C. Two-Dimensional Propagation 

The derivation of the two-dimensional propagation equation for a discretized 
spectrum is analogous to that of the one-dimensional version (Eq. (14)) except for 
a directional correction term. Following the same procedure as in Section 1I.B we 
find as equivalent of Eq. (6) 

in which c& = &,,,/i3f and c:,~ = &,,J% and the average energy density 

(22) 

The subscripts x and y refer to x- and y-component, i and j are number indices in 
f- and O-space, respectively. 

The frequency derivative of the energy density aE(f, e)/i?f can be treated as before 
but the direction derivative aE(f, e)/ae needs to be treated differently. Analogously 
to Eq. (7) and (8) we assume the energy density to be constant along a charac- 
teristic. If in addition we assume again identical spatial distribution for all com- 
ponents in a spectral bin(fi - 1 dfi, f, + t dfi; 0, - $ AtI,, 0, + 1 de,) then 

~(f, 8; X, Y, t) = af, 8; 5,, t.,, t - 7-1 (23) 

in which 

L=X--C,t, 

4, = Y - C.” t. 
(24) 

Using Eq. (23) and (24) and approximating aE/& and aE/dg, at time t - T with 
aE/ax and aE/ay at time t, the direction derivative of the energy density can be 
approximated by 

a _ 
k E(f, 8; X, y, t) N - C, T sin tIj;i- E,(x, y, t) + C, TCOS ej$ E&X, y, t). (25) 

X 

It is now convenient to use polar coordinates (n, s) rather than the Cartesian coor- 
dinates (x, y) 

x = s cos e, - n sin e,, 
(261 

y=ssinOj+ncos8. 
\ I 

I’ 
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The frequency and direction derivatives of E(f, 9; x, y, t) can then be written as 

JT. E(f, 8; x, y, t) N - c: T; E&z, s, t) 
af 

(27) 

and 

g E(f, 8; x, y, t) N c; Tg E,(n, s, t). C-3) 

Substituting polar coordinates and these expressions for &F(J 13; X, y, t)/af and 
aE(f,O; x, y, t)/aO in Eq. (21) results in the final two-dimensional energy balance 
equation of the discretized spectrum, 

-; 
[ 

D-g E&z, s, t) --& Dn”g E&z, s, t) = 0 1 [ 1 (29) 

in which 

D,, = AC; T/12 (30) 

and 

D,, = cf A@; T/12. (31) 

Equation (29) is the main result of this study. It differs from the conventionally 
used equation of wave propagation (1) in that two correction terms are included: 
one for longitudinal frequency dispersion and another for transversal directional 
dispersion. The equation can be readily rewritten in Cartesian coordinates, using 
tensor conventions, 

-$x,y, Q+; c&(x,y, W&&y, t) [ 1 
+ a 

JY [ cii,E&, Y, t) - Dyy-& &x, y, t) 1 
-20 

a2 - 
-E&x, y, t) = 0 

*y ax ay 

in which 

D,, = D,,cos28 + D,,,sin’O, (33) 

D, = D,,sin’O + D,,cos20, (34) 

D, = (D,, - D,,) sin 8 cos 8. (35) 

(32) 
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The above derivation of the energy balance equation for spectral bands is based on 
propagation over a flat earth (Euclidean coordinates). Swell propagating on a 
global scale is obviously affected by the curvature of the earth’s surface so that for 
such a situation the derivation should be given in spherical coordinates. This would 
modify the above proposed directional dispersion term such that an initially narrow 
wave field (b-function in x, y space) carried by one frequency f, and a finite direc- 
tional band AO, spreads initially in time but starts to decrease its horizontal dimen- 
sions when it has travelled a distance equal to one quarter of the earth’s circum- 
ference. The spatial standard deviation of the propagating energy distribution is 
(compare with Eq. (19) and (20)) 

(T = AOiR sin(cit/R)/,/IZ (36) 

in which R is the radius of the earth. This implies that when the wave component 
has travelled over a distance of half the earth’s circumference (tit = xR, the distance 
to the antipodean point), the value of CJ is zero and the initial h-function is again a 
B-function. Such a spreading can be achieved with the following value of D,,, 

D,, = c, AtIf R sin(ci T/R) cos(c, T/R)/12. (37) 

In addition to this change in D,, in Euclidean coordinates, the modified energy 
balance equation (32) should be transformed to spherical coordinates latitude and 
longitude. The resulting equation is somewhat similar to Eq. (32) except that one 
extra term appears. This term accounts for the change of propagation direction 
relative to true North when travelling along a great circle (see Introduction). 

No attempt is made here to carry out this transformation. The determination of 
the time T elapsed since the waves were imposed on the ocean surface is trivial if 
the wave field is imposed on the ocean surface at one moment. It is not so trivial in 
a more realistic situation where waves are continuously generated. This aspect is 
adressed next. 

D. Wave Generation and Dissipation 

The model as presented above applies to waves which are generated instan- 
taneously and which propagate without any supply or withdrawal of energy. In 
practical applications the waves grow or decay continuously in time. Strictly speak- 
ing one would need to propagate the generated energy over the entire ocean for 
every time step in the model in which wave energy is generated. This is obviously 
impractical; one would want to use one propagation model in which the correction 
term is based on some integral time lapse instead of the time span T which was con- 
sidered above. We define here an integral time lapse r as the “age” of the wave com- 
ponent (A 1’3) based on the development of that component in the past. Reference is 
made to the Appendix for details. Only the results are mentioned here. The wave 
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age r is a wave property which propagates with the wave energy and for which we 
can write an evolution equation 

; T(f, 8; x, I) = 1 - S,(f, 0; x, t) 
‘qf, 8; x, 1) 

T( f, 8; X, t) 

in which S,(f, 6; x, t) is equal to the sum of the generation terms in the source 
function S(,f, 0; x, t). We assumed that wave dissipation does not affect the wave 
age. 

The evolution equation (38) is simple in form and readily interpreted. Obviously 
if waves propagate without growth or decay, i.e., S, =O, wave age must increase 
linearly in time, 

$T(,f.&X,f)=l. 

The generation of “new” wave energy rejuvenates the waves and, as indicated in 
Eq. (38), the wave age decreases proportionally with the rate of adding new energy. 
Since we have assumed in deriving equation (38) that wave decay affects “old” and 
“young” wave energy to the same degree, the total wave age is not affected by 
decay. Energy dissipation is therefore not represented in the evolution 
equation (38). We can write the left-hand side of this evolution equation as an 
operator which is identical to that for the propagation of wave energy, including 
the proposed correction terms (Eq. (32)). The advantage is that the increase in 
computing effort to include wave age in the model is relatively small. In fact, the 
extra effort is only to compute, store and retrieve the simple expression on the right 
hand side of the evolution equation (38). 

We wish to emphasize that the concept of “wave age” introduced here should not 
be confused with the traditional concept of wave age which is usually a nondimen- 
sional number indicating the degree of development of the wave field, e.g., the ratio 
of the phase speed at the peak frequency of the wave spectrum and the local wind 
speed [12], or a dimensionless peak frequency [13]. 

An alternative to the above model for a time-dependent wave age is to use a con- 
stant, characteristic value for the wave age (thus avoiding adding equations to the 
model). For instance, Gelci et al. [S] developed a model in which the energy is 
redistributed in x, y space at every time step in the model. This model amounts to a 
model with constant diffusion coefficients, or, in terms of this study, a constant 
wave age. The spatial spreading of energy is consequently proportional to the 
square root of time instead of linear with time as it should be. Gelci et al. [IS] chose 
the redistribution coefficients such that the spreading in the model is some best fit 
(in time) to the proper spreading. If one requires the spatial spreading to be iden- 
tical for the two models at a given time T after wave generation then it is readily 
shown that for an initial spatial b-function the wave age should be taken as T/2. 
However, this choice implies a fair amount of error in the results prior to time T. If 
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one wishes to decrease that difference, a smaller wave age could be taken. But a 
constant wave age of T/3 (as suggested in Fig. 11 of [S]) would, in the case of the 
propagating Gauss distribution of Eq. (19), still result in an error of 18 % at time 
t = T in the standard deviation of the spatial distribution. In the model with the 
time-dependent wave age an error of this magnitude would only be obtained if that 
wave age were constantly underestimated by 33% (which seems to be an 
unrealistically large underestimate for any well-behaved wave model). 

Obviously, for a model with a constant wave age that is used in situations with 
continuous generation and dissipation of wave energy, the value of T should be 
chosen such that it corresponds to some characteristic distance between the wave 
generating storms in the area of propagation and the point(s) of forecast. 

III. ILLUSTRATIONS 

A. Introduction 

To demonstrate the effect of the proposed corrections we compare results of 
typical model computations (low spectral resolution) with results of computations 
that closely approximate exact propagation (high spectral resolution). Since our 
basic concern in this study is the propagation of waves and not their generation or 
dissipation, we impose the wave field instantaneously on the ocean surface. We 
ignore wave generation and wave dissipation thereafter during the propagation. 
The illustrations are given for the spatial distribution of the swell part of the spec- 
trum since the relevant effects are thus best demonstrated. 

Some numerical propagation algorithms unintentionally contain so-called 
numerical diffusion, simply as a result of the type of finite-difference approximation 
used for the nondiffusive transport terms in the original energy balance (Eq. (1)). 
Others do not contain such numerical diffusion or only to a small degree. Since the 
proposed correction terms are of a diffusive nature, we consider numerical diffusion 
as a separate parameter in the illustrations. 

We thus distinguish four situations: 

(1) Computations that closely approximate exact propagation. These are 
carried out for the original propagation equation (1 ), without numerical diffusion 
and with a high spectral resolution. 

(2) Computations carried out with commonly used low spectral resolution 
for 

(a) the original equation (l), without numerical diffusion, 
(b) the original propagation equation (l), with numerical diffusion as 

present in many operational models, 
(c) the corrected propagation equation (32), with negligible numerical dif- 

fusion. 
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B. Methods of Computation 

The two computations based on the original propagation equation (1) and 
carried out without numerical diffusion (situations (1) and (2a)) are performed 
with a simple back-tracing technique. We take the value of the energy density of the 
wave component (f, 13) at location (x, y) at time t equal to its value at the 
appropriate location at time t = 0, 

qf, 8; x, y, t) = E(f; 0; x - c, t, Y - cy t, 0). (40) 

This is the exact solution of the wave energy propagation equation (1) in the 
absence of dissipation or generation of wave energy for a single spectral com- 
ponent (A 0). The difference between situations (1) and (2a) arise only as a result 
of different spectral resolution. The values for Af and A0 are 0.005 Hz and 5”, 
respectively, for situation (1) and 0.02 Hz and 30”, respectively, for situation (2a). 

For the other situations ((2b) and (2~)) we model the original propagation 
equation (1) with an algorithm that is virtually free from numerical dtffusion and to 
which we add diffusion terms of our choice. For situation (2b) we choose to add 
isotropic diffusion terms with constant coefficients to simulate numerical diffusion. 
For situation (2~) the added terms are the proposed correction terms given in 
Eq. (32). The algorithm used is an explicit predictor-corrector algorithm that can 
be considered as an iterative approximation of the Crank-Nicholson scheme [ 143. 
To assess the propagation errors of this algorithm we consider the situation of the 
propagating Gauss-distribution which is described in Section 1I.B (Eq. (19)). The 
propagation was computed with this algorithm with the original propagation 
equation (1) to which the proposed correction terms were added. The error in the 
spreading of the distribution was less than 2% for conditions that are almost equal 
to those in situations (2b and 2c), see below. We are therefore confident that the 
algorithm is virtually free of numerical diffusion for the situations considered below 
and also that it reproduces the effects of the added diffusion terms properly. The 
spectral resolution for the computations of situations (2b) and (2~) is the same as 
for situation (2a), Af = 0.02 Hz and A0 = 30”. 

C. Initial Conditions 

We consider the propagation of swell from a distant storm in an area of 
4200 x 3000 km (roughly the dimensions of the North Atlantic Ocean) covered with 
a grid of 150 x 150 km mesh-size. The time step in the numerical computations is 
1.5 hr. These are values which are fairly commonly used in presently operating 
numerical hindcast or forecast models. The period over which the computation 
extends is 90 hr. 

The initial wave field in the storm is represented as a Gaussian distribution of 
wave energy in x, y space with a standard deviation of 200 km centred at location 
x = 600 and y = 600 km (Fig. 3(a)). The initial wave field in each grid point in 
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the storm area is represented with a two-dimensional spectrum E(f, 0) of the 
Pierson-Moskowitz type [ 15 J with a cos2(8)-directional distribution: 

The peak frequency fp was chosen as 0.1 Hz. In the centre of the storm the value of 
CY was chosen as 0.016 (significant wave height about 5.5 m). We choose the initial 
main wave direction f?,, = 30” so as not to have the main direction of propagation 
coincide with the direction of one of the axes of the grid. The initial value of the 
transported quantity E, is determined from Eq. (41) according to the definition in 
Eq. (22) with a resolution which is l/5 of the resolution that is used in the 
propagation computations (both in frequency and direction, see above). 

D. Results 

The effect of including the proposed correction terms can be well illustrated with 
the spatial distribution of wave energy that has travelled a long distance undistur- 
bed by wave generation of dissipation. Such energy is usually low-frequency energy 
(swell) and we define it here as E,,, , 

271 0.1 Hz 

Eo., = s s EU 0) df de. (42) 
0 0 

The results of the near-exact computations (situation (1)) are given in Fig. 3(b) for 
time t = 90 hr. The initially narrow distribution (Fig. (3a)) has spread into a 
smooth, longitudinally narrow ( - 750 km half power width) and laterally broad 
( - 3500 km half-power width) distribution over roughly a quarter circle section at 
a distance of about 3000 km from the source area. That these results are a good 
approximation of the exact situation was checked by repeating the computations 
with increased spectral resolution (half the values of df and A@. The changes in the 
results were negligible. 

The effect of reducing the spectral resolution to the commonly used resolution of 
Af = 0.02 Hz and AB = 30” is well illustrated by comparing the above results of 
situation (1) with the results of the low-resolution computations of situation (2a) 
(no numerical diffusion, Fig. 3~). The disintegration of the initial wave field into a 
number of individual wave fields is obvious. The results for situation (2b) which 
illustrate the presence of numerical diffusion that is inadvertedly present in many 
algorithms, are given in Fig. 3d. For this situation we choose to simulate an 
isotropic diffusion with a magnitude between that of a Lax scheme and that of an 
upwind difference scheme [ 141. The values of the corresponding diffusion coef- 
ficients are Ax2/2At ( rr 2 x IO6 m’/s in our case) and cAx/2 ( E 0.75 x IO6 m2/s in 
our case), respectively. We choose D,,, = D,,,s = lo6 m’/s as a typical value. The wave 
energy, after 90 hr of propagation, is too widely distributed over the ocean in this 
case and its maximum value is too low (see Fig. 3d). The longitudinal extent of the 
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FIG. 3. Contourline plots of swell energy Ea., distribution over the ocean according to various 
propagation models after 90-hr travel time. The contourline interval is 150 cm2 except in panel (a) where 
it is 100 cm2 and in panel (d) where an intermediate level is shown. Panel (a) initial distribution, panel 
(b) near-exact solution (situation (I)), panels (c) and (d) propagation without proposed correction 
(situation (2a) low resolution; no numerical diffusion and (situation (2b) with numerical diffusion 
respectively), panels (e) and (f) propagation with proposed correction, (situation (2~) low resolution 
with corrected propagation, Ax = Ay = 150 km and Ax = Ay = 75 km, respectively). 
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distribution is now approximately 2000 km whereas it is 750 km in the near-exact 
computations (situation (1)). The lateral extent is also too large, but its magnitude 
cannot be determined from the illustration. 

The proposed corrections (situation (2~)) improve the situation considerably 
[Fig. 3e]. Comparison with Fig. 3b (near-exact computation) shows that the 
spreading of the initial wave field seems to be adequately modelled for many prac- 
tical problems. But one unexpected error is noticeable in this case. The location of 
the wave field is too close to the source area by about 10% of the expected dis- 
tance. This is due to an inherent error of the chosen numerical algorithm. The ratio 
of the mesh-size in the model ( = 150 km) to the length of the initial distribution 
( E 800 km) is large enough to under-estimate the propagation speed by 10% to 
20% (e.g., [ 141). Decreasing the mesh-size to 75 km, and the time step to 1 hr, 
removed this discrepancy (Fig. 3f). We also used a constant wave age of 45 hr 
(wave age = T/2, see Section 1I.D) to see whether the resulting spatial distribution 
at 90 hr would differ from the one in Fig. 3e. As expected, the differences Tj
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spreading. Such directionality in the propagation characteristics of the model seems 
to be unbalanced. One would prefer to have a more or less isotropic spreading. This 
is achieved by taking the longitudinal diffusion coefficient D, equal to the transver- 
sal diffusion coefficient D,,. This implies the following relationship between the 
directional resolution (de) and the frequency resolution (indicated by dc): 

A0 = AC/C (0 in radians). (43) 

As AB is a constant in wave models, the relevant parameter for the frequency 
resolution is the relative difference of propagation speed across on frequency band. 
This is equivalent in deep water to the relative band width Af/f itself. In our 
illustrations (with a Pierson-Moskowitz spectrum) a resolution of Af = 0.02 Hz 
provided sufficiently accurate results for waves with frequencies of about 0.1 Hz, i.e., 
a frequency resolution of Af = 0.2f: However, for the more narrow JONSWAP 
spectrum [ 161 we suggest that a resolution of Af = 0.1 f would be adequate for 
most purposes for models operating on a scale of the North Atlantic Ocean. This 
normalization of the frequency resolution implies a resolution along the frequency 
axis that is rather high at low frequencies and rather coarse at high frequencies. 
This seems to agree with a requirement that the shape of the spectrum should be 
well resolved. Most wind wave spectra require a higher resolution in the swell 
dominated low-frequency part than in the wind sea dominated high-frequency part 
with its f-’ equilibrium tail. It follows from the condition of isotropic spreading 
(eq. (43)) that a frequency resolution of Af =O.l to 0.2f corresponds to a direc- 
tional resolution A0 z 5” to 10” for every frequency. Obviously, a model without 
the proposed corrections would require a much higher resolution to obtain similar 
results as a model with the proposed corrections (if numerical diffusion is absent). 
It should be pointed out that if the ideal resolution mentioned in the Introduction 
is used, the proposed corrections are not needed (Af =f/N and Afl = l/N). 

(c) Propagation Scheme 

In our numerical experiments we used a predictor-corrector propagation scheme 
that can be interpreted as an iterative Crank-Nicholson scheme. This method 
suited our purpose well because it can be shown to be free from numerical diffusion. 
However, for very high values of the diffusion coefficient in the correction term 
(which were not attained in the given illustrations ), the scheme proved to be 
unstable. This is characteristic for all explicit propagation schemes. We therefore 
recommend to use a scheme that has negligible numerical diffusion and that is also 
unconditionally stable and efficient such as the Alternating Direction Implicit 
method. Other methods with appreciable numerical diffusion such as forward-time, 
central-space methods or the fully implicit method of Laasonen are not recommen- 
ded. Properties of various numerical schemes are described in such text books as 
[14, 17, 183. 
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V. CONCLUSIONS 

To represent the propagation of waves across the ocean in discrete spectral wave 
models one should use the energy balance equation of spectral bands rather than of 
individual wave components. Economic considerations force certain limitations on 
the band width so that a coarse spectral resolution cannot be avoided. To make the 
best of such a situation one can use the energy balance equation of an individual 
wave component corrected for the finite spectral band width. This correction can be 
approximated with two correction terms which have the character of diffusion 
terms. One of these accounts for longitudinal (frequency) dispersion and the other 
accounts for transversal (directional) dispersion. The two terms proposed in this 
study have the following desired qualities: 

(i) they are derived from the energy balance equation of the waves; 
(ii) their characteristics depend on the spectral band characteristics; 
(iii) they spread an initially narrow spatial distribution of wave energy 

linearly in time at the proper rate; 
(iv) they are local operators, although the diffusion coefficients are nonlocal. 

The proposed correction terms depend on the wave age which is the time lapsed 
since the generation of the wave energy considered. A pragmatic definition is 
suggested for situations with a continuous growth and decay of wave energy. 

Numerical experiments illustrate that using the proposed correction terms 
improves the propagation characteristics of the model considerably as compared 
with conventional models. Computations with the proposed correction terms based 
on the notion of wave age are estimated to require about 50% (or less) more com- 
puter time and about 100% more computer storage capacity than conventional 
computations. This is far less than would be required for an increase in spectral 
resolution having similar qualities of representing the continuous wave field. An 
even more economic alternative is also suggested. 

It is recommended to use an Alternating Direction Implicit method for the 
propagation scheme since this is an unconditionally stable scheme without 
numerical diffusion. For models operating on oceanic scales with the proposed 
corrections a frequency resolution of df= 0.1 to 0.2f (or smaller) and a directional 
resolution of A8 = 5 to 10” (or smaller) is recommended. 

APPENDIX: WAVE AGE 

To arrive at a definition of an integral time lapse r to replace the time span T, we 
consider the wave energy density E( f, 8; x, t) to be the sum of energy contributions 
from the past. Such a contribution at time t = I, is denoted with F(,f, 0; x, t; t,?) so 
that the energy density at time t can accordingly be written as 

5 

I 
E(.L 8; x, t) = F(.fi 8; x, f; tp) dt, (Al 1 

xx 
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in which F(f, 0; x, t; tg) dt, is equal to the growth of E(f, 8; x, t) in the time interval 
dt, at time t = t,. If we consider the source function S as the sum of the generative 
processes (denoted by S,) and the dissipative processes (denoted by S,), 

-$ll; 6; x,t)]=S,(f,~;x,t)+S,(f;~;x,t) (‘42) 

then F(f, 0; x, t; tn) is equal to S&f, 8; x, fR) at time t = t,. We define wave age r as 
the weighted average of the time lapse (t - ‘J with the contribution F(‘(f, 8; x, t; lR) 
as weight (dropping f and 8 from the notation): 

1 ’ 
T(X, r) 3- 

E(x, t) s F(x, t; $J(t - $1 d& 
--a; 

(A3) 

The rate of change of r in a frame of reference moving with the wave energy is 
found by considering the derivative of the product E(x, t). T(X, t), 

-g [E(x, t). T(X, t)] =; i‘l P-(x, t; tg). (t - tg) dt, 
00 

= “ F(x, t; tg) dt, + j’, -$ F(x, I; t,)(t - tg) dr,. (A4) 
-03 

The first term on the right-hand side is equal to E(x, t) (see Eq. (Al)); the second 
term can be evaluated by assuming that the decay of F(h 8; x, t; tg) is proportional 
to F(,f, 8; x, t; lx) itself, 

SAX, t) fF(x, 2; tg)=- 
E(x, t) . F(x, c $1 for t > t, (A5) 

It follows from Eqs. (Al )-(A4) that 

$ [E(x, t).z(x, t)] =E(x, t)+g,’ F(x, t; rg) . (t - tg) dt, 
3 a2 

= E(x, t) + S,(x, t). T(X, t). (A6) 

When the product rule of differentiation is applied to Eqs. (A2) and (A6) one finds 
that 

s ix t) -$ T(X, t) = 1 -B’ 
E(x, t) 

T(X, t) (A7) 

which is the evolution equation for the wave age r defined in Eq. (A3). 
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